Fachveröffentlichung

Kreisprozeßverbesserung durch Entspannungsturbine

Klaus Hartmann
Klaus Hartmann

Kreisprozeß-verbesserung durch Entspannungsturbine

Bei der Suche nach Ersatzkältemitteln sowie dem Bemühen, Antriebsenergien einzusparen, werden nicht nur die Komponenten, sondern auch Verbesserungen des Kalt- dampfmaschinen-Kreisprozesses genauer analysiert.

Vor allem im letzten Jahrzehnt konnte durch Spezialverfahren beim Berippen der Wärmeaustauschrohre der Verdampfer und Verflüssiger die Wärmeübertragung erheblich verbessert werden.

Ebenso wurde bei der Entwicklung neuer Turbokälteverdichter besonderer Wert auf höchste aerodynamische Verdichterwirkungsgrade gelegt. Neuartige Ringdiffusoren aus der Flugtriebwerks-technik tragen gleichfalls zur Optimierung der Turboverdichterwirkungsgrade bei. All diesen Anstrengungen zur Effizienzsteigerung sind natürlich Grenzen gesetzt, d. h. der Aufwand muß im angemessenen Verhältnis zum Nutzen stehen.


1. Theoretische Grundlagen

1.1 Carnot-Prozeß

Beim idealen Kreisprozeß nach Carnot (Bild 1a), der in einer praktischen Maschine nicht verwirklicht werden kann, ergeben sich folgende Zustände:

- isotherme Wärmeaufnahme
- isentrope Verdichtung
- isotherme Wärmeabgabe
- isentrope Expansion

1.2 Kalt dampfmaschinen-Prozeß

Der wirkliche Kreisprozeß bei Kaldampfmaschinen (Bild 1b), der in das Cycle improvement by using a 2-steps-expansion turbine

For centrifugal chillers nowadays only R 134a can be widely considered. The lower energetic efficiency compared with R 11 or R 123 can be equalized by using a newly developed 2 steps expansion turbine with a special nozzle-design.

Keywords: Improvement of refrigeration cycle, 2 steps expansion turbine, nozzle-design, turbine efficiency

Bild 1a Carnot-Prozeß

Bild 1b Kalt dampfmaschinen-Prozeß

Bild 1c Idealer Kompressions-/Expansionsprozeß
Naßdampfgemäß häufig, weicht vom Carnot-Prozeß dadurch ab, daß die Wärme im Verdampfer und Verflüssiger nicht isotherm, sondern isobar ausgetauscht wird:
- isobare Verdampfung
- isentrope Verdichtung
- isobare Verflüssigung
- isenthalpe Expansion

1.3 Idealer Kompressions-/Expansions-Kreisprozeß

Die spezifische Kälteleistung könnte vergrößert und damit der Wirkungsgrad des Kreisprozesses verbessert werden, indem man die Drosselverluste der isenthalpen Entspannung \( h = \text{konstant} \) verhindert, also eine isentrope Expansion anstrebte (Bild 1c):
- isobare Verdampfung
- isentrope Verdichtung
- isobare Verflüssigung
- isentrope Expansion

Soll die isentrope Entspannung verwirklicht werden, muß im Kreisprozeß eine Expansionsturbine zur Energierückgewinnung eingebaut werden (Bild 2).

![Bild 2 Carnot-Kaltdampfkompressions-/Expansionsprozeß](image-url)

2. Quantitatives Potential bei isentroper Expansion


Für eine Turbokältemaschine, die im Klimatemperaturbereich unter folgen- den Bedingungen arbeitet:

![Bild 3 Einfluß des kritischen Punktes auf die Drosselverluste unterschiedlicher Arbeitsstoffe](image-url)

3.1 Düsen-Technologie

Hauptaufgabe der als Düsen bezeichneten Verbindungsrohre zwischen Tur- bolaufrad und Rotorperipherie ist die ef- fiziente Umwandlung der kinetischen Energie des beschleunigten Kältemittelgases der entspannenden Flüssigkeit zur verbleibenden Restflüssigkeit. Folgende kritische Elemente sind dabei besonders zu beachten:
- keine Krümmungen in der Flüßpassage, um ein Separieren von Flüssigkeit und Gas zu vermeiden;
- Eintrittslochplatte zur Überleitung der zusammenfallenden Dampfblasen aus der Flüssigkeit in eine große Anzahl kleiner Zellen;
- spezielle Düsen-Konstruktion erzeugt ein Durchflußdurchschnitt, das ein weiteres Zusammenfallen der Flüssigkeitstopfchen begünstigt;
- konvergierende/divergierende Geometrie, um Überschall-Austrittsgeschwindigkeiten zu erzielen.

Im Bild 4 sind beschriebene Besonder- heiten der Düsen-Technologie sowohl im schematischen Schnitt als auch in der Ansicht gut erkennbar.

![Bild 4 Ausführung der Düsen für die Energiereckgewinnung](image-url)

3.2 Turbinen-Technologie

Das eigentliche Hauptziel der Expansionsturbine besteht darin, eine maximale Rotor-Effizienz des Zwei-Phasen-Betriebes zu erreichen. Hierbei lassen sich folgende kritischen Elemente zusammenfassen:
- reine Impulstyp-Konstruktion, um weiteres Verdampfen des Zwei-Pha- sen-Gemisches am Rotor zu verhin- dern;

© Ki Luft- und Kältetechnik 91994
3.3 Turbinenwirkungsgrad


Bei voller isentroper Expansion, d. h. der Gesamtwirkungsgrad eines einstufigen Kreisprozesses besser als der eines mehrstufigen. Als allgemeine Regel gilt, daß durch einen Expansionsprozeß mit einem isentropen Wirkungsgrad von 50 % eine Energieverminderung erreicht wird, die dem eines zweistufigen Systems mit Economizer entspricht.

Für den gesamten Turbinenwirkungsgrad gilt:

\[ \eta_{\text{Turbine}} = \eta_{\text{Düse}} \times \eta_{\text{Rotor}} \]

In verschiedenen Versuchsreihen wurden Wirkungsgrade vorausberechnet, die nachfolgenden Messungen auch annähernd bestätigt werden konnten:

\[ \eta_{\text{Düse}} = 0.82 - 0.86 \]
\[ \eta_{\text{Rotor}} = 0.65 - 0.68 \]

Somit erscheint ein Turbinengesamtwirkungsgrad erreichbar von:

\[ \eta_{\text{Turbine}} = 0.53 - 0.58 \]

Die in Tabelle 1 zusammengestellten Daten belegen die Annahme, daß mit einer Expansionsmaschine in Turbokältemaschinen, die mit Hochdruckleitern betrieben werden, wertvolle Energie zurückgewonnen werden kann. Die aufgestellten Werte beziehen sich auf einen Turboverdichter mit 1750 kW Kälteleistung im Klimatemperturbine.

Wie ersichtlich, beträgt bei dem Kältemittel H-FKW 134a die optimale Rotordrehzahl 3600 min⁻¹ bei einem Durchmesser von 190 mm. Diese günstigen Voraussetzungen ermöglichen eine direkte Verbindung des Turbinenrotors mit der Motorwelle ohne zusätzliche Getriebe. Für ein Niederdruckkältemittel hingegen wäre bei 1200 min⁻¹ eine Drehzahlverminderung mittels Getriebe erforderlich. Ebenso müßte aufgrund des wesentlich größeren Rotordurchmessers von 635 mm das Motorgetriebe verändert werden. Vor allem jedoch ist der Betrag an zurückgewinnbarer Energie mit 6,1 kW weniger als halb so groß wie bei R 134a.

Wenn man diese ermittelten Daten als Basis für eine verallgemeinerte Gesetzmäßigkeit hinsichtlich Turbinendrehzahl und Kälteleistung bei dem Kältemittel H-FKW 134a annimmt, so kann folgern werden:

- optimale Rotordrehzahl = \( \frac{3600 \cdot (1750 \text{ kW}/\text{Kälteleistung in kW})}{1} \)
- optimaler Rotordurchmesser = \( 190 \cdot (\text{Kälteleistung in kW}/1750 \text{ kW}) \)

Dies würde bedeuten, daß für einen Verdichter von 175 kW Kälteleistung eine etwa dreifache Turbinendrehzahl mit ca. einem Drittel Rotordurchmesser erforderlich wäre; nahezu perfekt für eine Schraube mit 10 000 min⁻¹, die gegenwärtig auf dem Prüfstand bei Carrier getestet wird.

3.4 Kostenvergleiche

Dem Vorteil der Energieeinsparung stehen natürlich auch Mehrkosten gegenüber. Als Richtwerte kann man bei einer 1,75-MW-Turbokältemaschine von folgenden Kosten ausgehen:

- Systemkosten für Expansionsturbine = DM 7 000,-
- Systemkosten für 2stufigen Verdichter mit Economizer = DM 22 000,-

3.5 Leistungsverbesserung

Generell kann festgehalten werden, daß eine Expansionsturbine mit 50 % Wirkungsgrad etwa die gleichen Verbesserungen wie ein 2stufiger Verdichter plus Economizer erbringt. Vermutlich besitzt die beschriebene Expansionsturbine ein Wirkungsgrad-Potential von bis zu 70 %.

Doch bereits jetzt kosten die Expansionsmaschinen bei gleicher Wirkungsgradverbesserung nur knapp ein Drittel der 2stufigen Verwendung mit Economizer und dürfte sich daher ganz schnell durchsetzen.
4. Schlussbetrachtungen


Die neue Generation von Turbokältemaschinen mit H-FKW 134a und Entspannungsturbine ist energetisch und preislich den früheren Konstruktionen mit Niederdruckkältemitteln mehr als gleichwertig.

Literatur:

Schlüsselwörter:
Kalt dampfprozeß-Verbesserung
2-Phasen-Entspannungsturbine
Düsen-Technologie
Turbinenwirkungsgrad